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Myeloid Leukemia (AML) Patients from
Immunophenotypic, Cytogenetic, and
Clinical Parameters

G. Valet,"" R. Repp,” H. Link,’> G. Ehninger,* M. Gramatzki M,”> and SHG-AML study group
'Max-Planck-Institut fiir Biochemie, Martinsried, Germany
*Med.Klinik III der Universitit Erlangen, Germany
3Klinikum Kaiserslautern, Germany
“Med.Klinik und Poliklinik I der Universitit Dresden, Dresden, Germany

Background: The goal of this study concerned the pretherapeutic identification of high-risk acute myeloid
leukemia (AML) patients by data pattern analysis from flow cytometric immunophenotype, cytogenetic, and
clinical data.

Methods: Sixty-seven parameters of AML patients at diagnosis were classified for predictive information
by algorithmic data sieving using iteratively self optimizing triple matrix data pattern analysis (http:/
www.biochem.mpg.de/valet/classif1.html).

Results: Pretherapeutic predictive values for nonsurvival within five years and two years were 100.0%
and 83.2%, respectively, compared to 13.9% and 47.4% for the prediction of survival at five years and two
years, respectively. At diagnosis, five-year nonsurvivers showed increased patient age and higher concen-
tration of cells in the analyzed specimen, as well as increased levels of % CD2, CD4, CD13, CD36, and CD45
positive AML blasts. Two-year nonsurvivors were characterized by a data pattern of increased patient age
and levels of % CD4, CD7, CD11b, CD24, CD45, TH126, and HLA-DR positive AML blasts and decreased
levels of % CD1, CD65, CD95, and TC25 positive AML blasts. Cytogenetic abnormalities were not selected
for the optimized discriminatory data patterns.

Conclusions: The comparatively accurate pretherapeutic identification of high-risk AML patients may
prove useful for the development of individualized therapy protocols in stratified clinical patients groups.
Cytometry Part B (Clin. Cytometry) 53B:4-10, 2003. © 2003 Wiley-Liss, Inc.
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Current acute myeloid leukemia (AML) therapy is char-
acterized by an induction chemotherapy followed by a
risk-adapted post-remission therapy including autologous
or allogeneic hematopoietic stem cell transplantation
(SCT). Despite significant progress, the overall survival of
AML patients after therapy remains unsatisfactory (1).
Considerable efforts have been made to identify molecular
parameters, such as cytogenetic abnormalities (2), muta-
tions (3), or cell surface markers (4-6) as prognostic
factors, in an effort to better stratify AML patients for
adequate therapy. Prognostic factors represent statistical
operators. They describe the overall outcome tendency of
stratified patient groups, but no evaluation of disease
outcome for individual patients is possible.

‘When several prognostic factors are analyzed in combi-
nation as a data pattern, they may, however, provide
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individualized disease course prediction or risk assess-
ment. Typical data analysis methods like statistical multi-
variate analysis require assumptions on the mathematical
distribution of the value distributions of factors to be
analyzed, outlier values may have to be removed, missing
values are frequently substituted by interpolation, or indi-
vidual patients have to be removed from consideration.
Algorithmic data sieving as an alternative is not limited by
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Table 1
Database Parameters
Cytogenetic

Clinical parameters parameters CD-antigens
Patient_age Cytogen t3_3 CD1 CD36 TH126
Patient_sex Abnorm t6_9 CD2 CD38 TC12
ZZ_mio delb t9_11 CD4 CDh41 TC25
Leuk del7 t9_22 CD7 CDh42 TDT
LDH dely t15_17 CD9 CD45 cyCD3
fit3 mono abnl?2 CD10 CD56 HLA-DR
0S inv3 abnll CD11b CD58
Clinic_nr tri8 aberr_m CD14 CDhe61
Patient_nr trill invle CD15 CDo4

tril3 elseabno CD19 CD75

tri2l CD20 CD95

tri22 CD24 CD96

t8 21 CD32 CD117

t8_16 CD33 GlyA

t1_7 CD34 MPQO7

these considerations (7), the classifiers are suitable for
prospective classification of unknown patients in multi-
center studies, and standardized classifiers can be devel-
oped by consensus.

Patients of the SHG-multicenter studies AML'91 and
AML 96 fulfilling the two-year or five-year survival or non-
survival criteria were included in the subsequent classifi-
cations in an effort to provide more specific a priori
information on individual AML patients to the clinician.

PATIENTS, MATERIALS, AND METHODS

The clinical, immunophenotypic, and cytogenetic re-
sults of 724 AML patients with the last followup in July
2001 were available in a database with 70 data columns
(Table 1). Details on the various parameters are provided
in the accompanying clinical communication within this
supplement (8). Six clinical, 25 cytogenetic and 36 CD-
antigen parameters were subjected to CLASSIF1 data pat-
tern analysis (7,9-11). The remaining three parameters
clinic_nr and pat_nr served as patient identifier and over-
all survival (OS) as clinical truth for the predictive classi-
fications.

Data Pattern Analysis

The CLASSIF1 algorithm (7, http://www.biochem.mpg.
de/valet/classif1.html) transforms numeric values of data-
base columns into -, 0, or + triple matrix characters. The
transformation depends on their position below the lower
percentile, between the lower and upper percentile, or
above the upper percentile threshold of the respective
value distribution for the reference patient group of sur-
vivors. Following triple matrix transformation for all data-
base columns, a confusion matrix is established between
the clinical outcome survival/nonsurvival and the com-
puter classification survival/nonsurvival. The computer
classification is derived by algorithmic data sieving from
the database parameters.

The diagonal values of the confusion matrix represent
the classification specificity for the prediction of survival
for the reference patients and the classification sensitivity

for the prediction of nonsurvival. The optimum classifica-
tion is ideally reached when all samples are correctly
classified—that is when the value in each of the diagonal
boxes of the confusion matrix is 100% while the values in
nondiagonal boxes are 0%. This is typically not the case in
the beginning. Iterative learning optimizes the sum of the
diagonal values of the confusion matrix by the recording
result improvement or deterioration upon temporary re-
moval of data columns, followed by exclusion of nonpre-
dictive columns at the end of the iterative procedure. This
leads to the enrichment of the predictive data columns in
the disease classification masks. The learning process is
routinely performed for the 10%-90%, 15%-85%, 20%-
80%, 25%-75%, and 30%-70% thresholds with final selec-
tion of the optimum classification result. The disease clas-
sification mask for the reference group of patients
typically contains a sequence of (0) characters because
the majority of values are located between the two per-
centile thresholds, for example, in the 30%-70% situation.
Forty percent of the triple matrix characters are (0), 30%
are (-), and 30% are (+). The disease classifier mask for
the survivor reference groups contain two triple matrix
characters, e.g., (0+) in case the parameter is diminished
(-) in nonsurvivors, or (0-) in case of an increase (+) of
this parameter in nonsurvivors.

Unknown patients are classified according to the high-
est positional coincidence of their patient classification
mask with any one of the previously learned disease clas-
sification masks. A patient is classified with a double
classification in case of equal numbers of hits, e.g., for the
survivor, as well as for the nonsurvivor, disease classifica-
tion masks. Double classifications occur for transitional
state patients exhibiting borderline parameter patterns
between two classification categories. Missing values in
the triple matrix pattern or lack of overall information to
clearly distinguish the two classification categories are
additional causes for double classifications. They repre-
sent classification errors.
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Table 2A
Classification for 2-Year Survival

CLASSIF1 classification, 2 year

Clinical outcome Pat. (n) Surv. (%) Nsurv. (%) Ambig. class. (n)
Learning set
2-year survival 89 91.0 9.0 8
2-year nonsurvival 189 67.2 32.8 14
Neg./pos. pred. values (%) - 38.9 88.6 -
Unknown test set
2-year survival 61 63.9 36.1 1
2-year nonsurvival 192 b5.2 44.8 9
Neg./pos. pred. values (%) - 26.9 79.6 -
Learning + test set
2-year survival 150 80.0 20.0 9
2-year nonsurvival 381 61.1 38.9 23
Neg./pos. pred. values (%) - 47.4 83.2 -
Learning + test set patients 563
Total patients survival
2-year survival 159 28.2
2-year nonsurvival 404 71.8
Sum 563 100.0
<2-year still surviving 161
Total patients 724

30-70% percentile thresholds, database: DO/REPP37.B14.

All parameters contribute equally to the classification
result of an individual patient. The position of the param-
eters in the disease classification mask corresponds to
their location in the database. The CLASSIF1 algorithm
does not require assumptions on the mathematical distri-
bution of the classified parameters, no cropping of far
outreaching values is performed, and missing values do
not have to be substituted. The five-year survivors and
five-year nonsurvivors were classified in the same way as
just described for the two-year condition.

The initial database contained the data of 724 AML
patients. It was a priori split into a learning database
comprising the first 425 patients and a test database con-
taining the remaining 299 patients who remained un-
known to the learning process. The second database was
used to check the classification capacity of the learned
classifiers on unknown patients. Two hundred and fifty-
seven patients of both databases are still alive, with sur-
vival times of less than five years. They were useful for
prospective classification.

RESULTS

Certain parameters were excluded from classification
because of less than 15% available values, such as lactate
dehydrogenase (LDH), leuk, and CD56 for the two-year
survival classifications, reducing the number of classified
parameters to 64. Similarly, LDH, leuk, FLT3, CD1, CD3,
CD41, CD42, CD56, CD58, CD64, CD95, CD117, TH126,
and TC25 parameters were not used for the classification
in the five-year survivor group, leaving 53 parameters for
classification.

Both pretherapy databases were classified for survival
and nonsurvival after two years (Table 2A and 2B) and five
years (Table 3A and 3B). Further splitting into the three
categories 0- to one-year nonsurvival, one- to five-year

nonsurvival, and five-year survival provided insufficient
separation between the categories (data not shown) and
was not further pursued. The two-year nonsurvivors were
correctly identified in 88.6% and 79.6% of the cases in the
learning and unknown test set, respectively, while the
survivors classified with lower values (Table 2A). The
entire dataset classified with predictive values of 83.2% for
nonsurvival. Around 6% of patients could not be assigned
to either one of the classification categories because of
double (transitional) classifications (right-most column of
Table 2A).

Five-year nonsurvivors were correctly identified with
predictive values of 100.0%, with around 2% double clas-
sification (Table 3A). The unknown test set classified with
a higher sensitivity of 91.5% than the learning set (49.8%).
No unknown test set was defined for five-year survivors
because of the relatively restricted group of 25 patients
with five-year survival.

Table 2B
Disease Classification Masks: 2-Year Survival
2-year
Parameters Surv. N.surv.
Patient_age 0—- +
% CD1 0+ -
% CD4 (O +
% CD7 0— +
% CD11b 0-— +
% CD24 0— +
% CD45 (O +
% CD65 0+ -
% CD95 0+ _
% TH126 0— +
% TC25 0+ _
% HLA-DR 0— +
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Table 3A
Classification for 5-Year Survival

CLASSIF1 classification, 5-year

Clinical outcome Pat. (n) Surv. (%) Nsurv. (%) Ambig. class. (n)
Learning set
5-year survival 24 100.0 0.0 1
b-year nonsurvival 269 50.2 49.8 6
Neg./pos. pred. values (%) - 15.1 100.0 -
Unknown test set
5-year nonsurvival 165 8.5 91.5 2
Learning + test set
5-year survival 24 100.0 0.0 1
H-year nonsurvival 434 33.4 65.6 8
Neg./pos. pred. values (%) - 13.9 100.0 -
Learning + test set patients 467
Total patients survival
5-year survival 25 5.4
5-year nonsurvival 442 94.6
Sum 467 100.0
<b-year still surviving 257
Total patients 724

25-75% percentile thresholds, database: DJ/REPP32.B14.

The disease classification mask (Table 2B) predicts two-
year nonsurvival at increased (+) patient age (> 53.8
years, Table 4A), as well as increased frequency of CD4,
CD7, CD11b, CD24, CD45, TH126, and HLA-DR positive
AML blasts and decreased CD1, CD65, CD95, and TC5
positive AML blasts. The disease classification masks for
five-year survival and five-year nonsurvival (Table 3B) pre-
dicts nonsurvival at increased patient age (> 51.8 years;
Table 4B), higher number of cells, isolated from the ana-
lyzed specimen (> 229 X 10%/D), as well as at increased %
CD2, CD4, CD13, CD36, and CD45 positive AML blasts.
Discriminatory potential and statistical significance are
not strictly linked for a number of parameters (Table 4A
and 4B).

The reclassification results for 10 sequential patients of
the learning set for five-year survival (clinical outcome =
1, Table 5B) and nonsurvival (clinical outcome = 2, Table
50) indicate that five-year survivors are correctly classified
(= 1) by the CLASSIF1 algorithm. The classification coin-
cidence factors between 0.57-1.00 indicates the degree of
positional coincidence of the patient classification mask
(Table 5B and 5C) with the selected disease classification
mask (Table 5A). Nine of the 10 nonsurvivor patients are
correctly identified (= 2) and one patient is erroneously

Table 3B
Disease Classification Masks: 5-Year Survival
>b5-year
Parameters Surv. Nsurv.
Patient_age 0- +
ZZ_mio 0— +
% CD2 0- +
% CD4 0— +
% CD13 0- +
% CD36 0— +
% CD45 0—- +

classified as a five-year survivor (=1). The classification
coincidence factors for nonsurvivors are between 0.57
and 1.00.

The comparison of the classification results for five-year
survivors (Table 5B) and nonsurvivors (Table 5C) shows
that 95.0% of the patients are correctly classified, although
identity between the patient and the disease classification
masks occurs only in two (patients 100073 and 080055) of
the 20 classified patients (10.0%). This indicates a certain
independence of the classification from identity with the
disease classification mask. Eighteen patterns fulfill the
disease classification criteria. The frequency of decreased
(-), unaltered (0), and increased (+) characters in the
displayed classification masks shifts from 15(-), 34(0),
21(+) (Table 5B) in five-year survivors to 8(-), 10(0),
50(+) (Table 5C) in five-year nonsurvivor patients. The
increase of (+) characters and a concomitant decrease of
(=) and (0) triple matrix characters is obvious. All param-
eter values were available in five-year surviving patients
(Table 5B), while two values are missing (.) in the five-year
nonsurvivors (Table 5C).

The prospective classification of the remaining 257 sur-
viving patients with less than five-year survival time pro-
vided individualized five-year nonsurvival predictions for
63.8% of the patients. This is similar to the 65.6% for the
retrospective learning and test set analysis of Table 3A.
Most of these presently surviving patients—249 of 257 or
96.9%—were classifiable.

DISCUSSION

The essential result of this study concerns the prethera-
peutic prediction of five-year and two-year nonsurvival
with 100% and 88.6%, respectively, predictive value for a
substantial number of 49.8% and 32.8%, respectively, of
ultimately nonsurviving patients (Tables 2A and 3A). Sur-
vival prediction, in contrast, is unreliable, with predictive
values of only 15.1% and 38.9%, respectively.
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Table 4
Discriminatory Parameters

Parameter

Nonsurvival
means = SEM (n)

Statistical
significance

(Student P) Percentile values

A. 2-year survival®

Patient_age (y) 45.2 + 1.4 (90) 52
% CD1 pos. 2.24 = 0.50 (57) 1.2
% CD4 pos. 12.9 = 1.7 (84) 17
% CD7 pos. 16.3 = 1.8 (96) 17
% CD11b pos. 22.0 £ 2.3 (91) 31
% CD24 pos. 12.3 = 1.4 (89) 14
% CD45 pos. 82.7 = 1.7 (89) 85
% CD65 pos. 29.3 + 2.2 (93) 26
% CD95 pos. 25.9 + 3.1 (43) 24
% TH126 pos. 54.0 = 3.0 (57) 53
% TC25 64.2 + 3.2 (58) 65
% HLA-DR pos. 54.8 + 2.7 (97) b4
B. 5-year survival®
Patient_age (y) 42.8 + 2.6 (25) 53
zz_mio (10%/1) 191 = 50 (25) 38
% CD2 pos. 7.68 = 0.99 (22) 9.4
% CD4 pos. 9.71 £ 2.1 (21) 17
% CD13 pos. 36.1 = 4.8 (25) 51
% CD36 pos. 19.7 = 3.6 (25) 29
% CD45 pos. 79.0 = 3.4 (21) 86

oMU AN

I+ 1+ 1+

ONNONO

I+ 1+ 1+ 1+ 4+ 1+ 1+

(210) <0.001 36.5/53.8
8(81) <0.01 0.12/1.54
(187) <0.01 4.02/13.5
(202) NS 5.31/15.9
(197) <0.0025 6.73/21.6
(193) NS 3.84/12.0
(193) NS 78.6/93.0
(198) NS 15.2/37.4
(140) NS 12.5/28.6
(79) NS 37.0/68.9
(77) NS 60.0/79.4
(203) NS 46.0/70.0
.9 (275) <0.001 31.4/51.8
1(262) NS 56/229
.79 (263) NS 3.48/8.86
.2 (253) <0.05 2.51/12.8
.5(275) <0.0025 15.4/49.6
.5(271) <0.025 6.52/22.7
.0 (261) <0.025 73.2/187.6

@Percentile values are 30-70%.
bPercentile values are 25-75%.
NS = not significant.

The selected parameter masks (Tables 2B and 3B) indi-
cate that CD antigens, in combination with patient age
and number of isolated cells from the patient sample
(zz_mio), are informative for predictions, while no cyto-
genetic parameters are selected. This is understandable
because they occur only in about half of the AML patients
(1), which represents a serious disadvantage for individu-
alized classifications. CD antigens, in contrast, are present
on all AML blasts. Their apparent information content for
individualized disease course predictions prompts the fu-
ture evaluation of more detailed information. Relative an-
tigen densities, antigen ratios, and relative packing density
of antigens on leukemic blast cells have been informative
parameters in the individualized classifications of other
hematologic malignancies (9) and could be of equal value
in AML patients.

The selection of CD antigens by data pattern analysis
may prompt the search for AML typical antigen patterns in
premalignant myelodysplastic patients for individualized
therapeutic approaches during the preneoplastic phase.

Cytogenetic parameters (3), the presence of certain
antigens on AML blasts (4 - 6), but also clinical parameters
like patient age (12) and blast counts (13), contain prog-
nostic information. Prognostic factors are of importance
for patient stratification in multicenter therapy trials. They
are typically characterized by a certain fraction of therapy
responders and a fraction of nonresponders (8). Prognos-
tic parameters do, however, not identify nonresponders
before therapy.

As shown by the results of the individualized predictive
classifications, the pretherapeutic identification of 40% to

60% of the high-risk AML patients in stratified groups
(Tables 2A and 3A) seems possible. Predictive classifica-
tion is therefore of significant clinical interest, provided
such predictions are reliably accurate in more than 95% or
99% of the cases, as is shown for five-year nonsurvival in
this study (Table 3). It will be possible to check the
accuracy of the prospective predictions for five-year non-
survival, which has been established for the further out-
come of patients alive in July 2001.

The comparison of the prognostic stratification (8) with
the predictive classifications indicates that only two (CD11b,
HLADR) parameters of the predictive data pattern for two-
year survival (Table 2B) coincide with OS in the uni- and
multivariate data analysis of the same patient group. For
five-year survival, %CD4 and %CD13 (Table 3B) are selected
by the predictive and prognostic data classification.

It is interesting that a certain number of classification
parameters is selected by the data sieving algorithm al-
though the differences of the parameters means for survi-
vors and nonsurvivors are not statistically significant (Ta-
ble 4). Such parameters may provide nonoverlapping
parts of skewed value distributions for the discrimination
of certain subgroups of patients. Indications for
skewedness of value distributions are nonsymmetrical po-
sitions of the percentile thresholds with respect to the
parameter means, e.g., CD7, CD24, CD65, and CD95 in
Table 4A, and zz_mio and CD2 in Table 4B. The frequently
used selection of promising classification parameters ex-
clusively by statistical significance may miss valuable clas-
sification information. Algorithmic data sieving, in con-
trast, screens all parameters for classification potential.
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Table 5
Reclassification of the Learning Set for 5-Year Survival

Category

Disease classification masks

Classification categories abbreviation Class. coinc. factor patage zzmio CD2 CD4 CD13 CD36 CD45

A. Disease classification masks
5-year survivors 1 1.00 0 0 0 0 0 0 0
5-year nonsurvivors 2 1.00 + + + + + + +

Clinical CLASSIF1

Patient_id outcome prediction Class. coinc factor Patient classification masks

B. 5-year survivors
AMLO80049 1 1 0.57 0 0 + 0 + 0 +
AML100073 1 1 1.00 0 0 - 0 - - 0
AML240002 1 1 0.71 0 0 + 0 0 - +
AML100078 1 1 0.57 0 - + + 0 + 0
AML230031 1 1 0.57 + 0 + 0 - + -
AML0O30199 1 1 0.86 0 0 + 0 - 0 0
AML0O30196 1 1 0.57 - 0 + + + 0 -
AMLO80055 1 1 1.00 - 0 0 - 0 - 0
AML020251 1 1 0.57 0 0 + + + 0 0
AML100082 1 1 0.57 - 0 - + + 0 +

C. b-year nonsurvivors
AMLO80016 2 2 0.71 + + + + - + -
AML300022 2 2 0.57 + 0 0 + + 0 +
AML300023 2 2 0.86 + + - + + + +
AMLO80017 2 2 0.57 + - 0 . + + +
AMLO30038 2 2 0.86 + 0 + + + + +
AML300024 2 2 0.86 + 0 + + + + +
AML370006 2 2 0.57 + + 0 + - 0 +
AML0O30040 2 1 0.57 0 - + + 0 + -
AML100009 2 2 0.86 + + - + + + +
AML230031 2 2 0.86 + - + + + + +

Displayed are representative sequences of 10 patients from the >5-year survivor patients (B) as well as from 5-year nonsurvivor
patients (C) of database DJ/REPP32.B14. Patients are classified according to the highest number of positional coincidences between
the patient and disease classification masks (A). Parameter values below the 25% percentile are represented by (-), values between
the 25% and 75% percentiles by (0), values above the 75% percentile by (+) and missing values by (.).

The results emphasize the potential of data pattern
classification for individualized disease course predictions
in AML. The predictions represent dynamic predictions
because they are therapy dependant. A dynamic predic-
tion may shift within hours from danger to unproblematic
under preventive therapy in nonmalignant diseases, such
as during sepsis or shock development in intensive care
patients (10,11). The early recognition of danger may
avoid or reduce irreversible tissue destruction or multior-
gan failure.

Pretherapeutic nonsurvival prediction in the relatively
therapy-resistant AML may favor the indication for therapy
intensification or early stem cell transplantation. It may also
result in the search for early therapeutic interference points
in case of premalignant myelodysplastic syndromes.
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