Classimed logo

CLASSIF1 Individual Patient Classification: SAIS1 Trial (Sitagliptin/Glimepiride)

Günter Valet

       < back
       external link=external link

Summary: HbA1c (glycated hemoglobin A1c) is the best discriminating of the 32 available SAIS1 clinical trial parameters. It identifies Sitagliptin and Glimerpiride treated patients with specificities of 97.4% and 95.3% at sensitivities of 62.9% and 76.3% for the training set patients with 100.0% and 88.3% specificities at 75.0% and 63.6% sensitvities for the validation patients, using the 5/95% percentile thresholds for CLASSIF1 algorithmic classification.
The less discriminating but parameter fishing percentile thresholds 25/75% and 30/70% identify patients (tab.2) with 85.0% and 70.7%% positive predictive values in the training and 80.0% and 77.8% in the validation set. Glimepiride therapy induces the single decrease of the HbA1c parameter while Sitagliptin as DPP-4 (dipeptidyl peptidase 4) inhibitor is accompanied after 26 weeks of therapy by increases of (+) CPEPTI (insulin C-peptide index), (+) HDL-cholesterin (high density lipoprotein-cholesterin) classification mask parameters in combination with parameters of the oxidative metabolism (+) SOD (superoxide dismutase) and (+) BAP (biological antioxidant potential), although when compared to Glimepiride after therapy, reduced oxidative stimulation (-) D-ROMS (reactive oxygen metabolites-derived compounds) at increased proinflammatory parameters (+) CRP (C-reactive protein), (+) TNF-alpha (tumor necrosis factor alpha preexisting !), as well as (+) TPRI (peripheral vascular resistance) at decreased (-) CARDIX (cardiac output index) are observed for Sitagliptin.
New patients can be manually classified without computer as an advantage of the CLASSIF1 algorithm for everyday medical.practice, in case classification masks and relevant percentile thresholds are publicly available.

1. Introduction

Clinical trial data are usually statistically evaluated (1 2) or more recently by machine learning algorithms (3). Since ultimately individual patients are treated, the utility of individual patient oriented software like the CLASSIF1 algorithm (4, 5) was investigated using the SAIS1 EXCEL data of (weeks 0 and 26)

2. Sitagliptin after Therapy (26 weeks)
fig.1 Data classification with the 5/95% percentile threshold pair shows the high accuracy classification potential of HbA1c (glycated hemoglobin A1c), provided additional parameters of similar selectivity can be found for reliable (>95% or >99% accuracy) clinical classifications. (training as well as validation patients and parameter lists are attached as pdf files). Average recognition (ARV=(specificity+sesitivity)/2 (%)) and average predictive values (APV=(npv+ppv)/2 (%)) were 80.2 and 84.8 %. Validation patients classify similarly with ARV and APV values of 87.5 and 91.5%.

fig.2 Change of the percentile pair from 5/95% to the less stringent condition of 25/75% results in a less accurate classification but besides HbA1c points with four additionally selected parameters in the classification mask to potential molecular mechanisms involved in Sitagliptin action. (training and validation lists, classification, means with significances, percentile thresholds). ARV and APV of 70.0 and 74.6 % at the 25/75% percentile thresholds are lower than for the 5/95% classification (fig.1), demonstrating increased selectivity of the 5/95% thresholds.for accurate classifications. The validation patients classify with APV=70.0% and APV=74,6% equally insufficiently.

fig.3 The parameters selected in the classification masks concern lipid and oxidatative pathways besides the high discrimination HbA1c parameter (fig.1). The mask parameter sequence (-+++++) (-) HBA1C (hemoglobin A1c), (+) CPEPTIND (C-peptide index ), (+) HDL (high density lipoprotein cholesterol), (+) SOD (superoxide dismutase), (+) BAP (biological antioxidant potential) (p<0.05, < 0.10). represents the location of the respective data columns in the database Data columns nr.13,18,21,25,32 with (means, statistics, percentiles) were selected from initially 32 data columns, that is most of the available information does not contribute to the classificarion result.

.
3. Glimepiride after Therapy (26 weeks)

fig.4 Glimepiride classifies with the 5/95% percentiles results in an ARV of 80.6 and an APV of 84.3%, similarly as for the Sitagliptin patients (fig.1).
fig.5 HbA1c in Glimepiride as in Sitagliptin treated patients is the only well discriminating parameter and shows high statistical significance.The HbA1c value distribution at 0 weels is right skewed as evidenced by the lower median of 7.29% as compared to the mean of 7.45% This provides good discrimination at the left flank of the value distribution curve, explaining the good identification of Glimepiride (fig.4) and Sitagliptin (fig.1) treated patients (training, validation set patients and parameter lists)
fig.6 The most sensitive parameter fishing percentile pair 30/70% generates like the high accuracy pair 5/95% only HbA1c as most discriminating parameter, indicating that Glimepiride by direct action on the Langerhans cells of the pancreas influences only the HbA1c amongst the 32 determined parameters of the trial (training, validation, parameters).
fig.7 Like in the 5/95% classification (fig.5) the median (7.30%) of the HbA1c value distribution is right skewed as indicated by a mean of 7.43%.

4. Compressed Result Display

The use of confusion matrices (figs 1/ 2/ 4) is suitabe for the display of individual classifications but a compressed display, containing the same information, is preferable.in case of multiple classifications.

SAIS1 Clinical Trial: Quality of Individual Patient Classifications

 drug

 classific
 perc  (%)  pat  (nl/nv)  spectp  (%)  senstp  (%)  npvtp  (%)  ppvtp  (%)  specvp  (%)  sensvp  (%)  npvvp  (%)  ppvvp  (%)
 Sita  26/0wks    5/95  38/35    97.4    62.9    74.0    95.6  100.0    75.0    83.3  100.0
 Sita  26/0wks  25/75  38/34    92.1    50.0    67.3    85.0    90.0    50.0    69.2    80.0
 Glime  26/0wks    5/95  43/38    95.3    65.8    75.9    92.6    83.3    54.6    66.7    75.0
 Glime  26/0wks  30/70  43/38    72.1    76.3    77.5    70.7    70.7    83.3    71.4    77.8

tab.1 The Sitagliptin (Sita) classifications (fig.1) at the 5/95% percentie levels is superior to the 25/75% (fig.2). classification, similarly as the 5/95% Glimepiride (Glime) (fig.4) to the 30/70% (fig.6). classification, concerning highest specificity, sensitivity, negative and positive predictive values,indicating that the highest quality classifications are obtained with the lowest possible percentile pairs. Abbreviations: Sita=Sitagliptin, Glime=Glimepiride, classific=classification category, perc=percentile, pat=patient, spectr, senstr, npvtr, ppvtp=specificity, sensitiity, negative/positive predictive values of the training set, specva, sensva, npvva, ppvvp for validation set patients.

5. Classifier Robustness: Cross Validation

CLASSIF1 classifiers are inherently robust as shown by cross-validating (tab.4) the embedded validation patients.

SAIS1 Clinical Trial:    Cross-Validation of CLASSIF1 Classifications (Sitagl.26 versus 0 weeks)

 drug

 classific
 perc  (%)  pat  (nl/nv)  spectp  (%)  senstp  (%)  npvtp  (%)  ppvtp  (%)  specvp  (%)  sensvp  (%)  npvvp  (%)  ppvvp  (%)
 Sita  p_56,60,65...    5/95  38/35    97.4    62.9    74.0    95.6  100.0    75.0    83.3  100.0
 Sita  p_57,61,66...    5/95  38/33    97.4    66.7    70.1    95.7  100.0    60.0    71.4  100.0
 Sita  p_58,62,67...    5/95  38/35    97.4    62.9    74.0    95.7  100.0    75.0    83.3  100.0
 Sita  p_59,63,68...    5/95  38/34    97.4    64.7    75.5    95.7  100.0    66.7    76.9  100.0
 Sita  p_60,64,69...  10/90  38/34    97.4    64.7    75.5    95.7  100.0    66.7    76.9  100.0

tab.2 Validation patients are hidden to the learning process by a question mark in the patient label record at the identifier position (character 7). The inaccessible character 8 of the 20 character patient label contains the yellow labeled truth C=control or T=therapy. for the learning process. The hidden validation patients do in fact not appear in the training set classification, as can be verified with patients nr. 56,60,65,70 .... missing amongst the training set patients. Validation patients were sequentially rotated, starting with hidden patients 56,60,65,70... then 57,61,66,71 .. further 58,62,67,72 and so on, followed by reclassification. Classifier robustness is due to the elimination of all non informative parameters during the learning process. The last classification was performed with the 10/90% percentiles because no classification was obtained at the 5/95% percentile thresholds.

6. Sitagliptin/Glimepiride prior Therapy (0weeks)

Patients groups in clinical studies are selected to match as good as possible for a certain number of parameters like age, sex or previous medical history but certain differences concerning investigaed molecular parameters may still exist. Sitagliptin patients were classified against Glimepiride patients prior to therapy start (0weeks) to detect differences between the patient groups.

CLASSIF1: SAIS1 Clinical Trial:    Sitagliptin/Glimepiride prior Therapy (0w)
 perc  (%)  pat  (nl/nv)  spectp  (%)  senstp  (%)  npvtp  (%)  ppvtp  (%)  specvp  (%)  sensvp  (%)  npvvp  (%)  ppvvp  (%)
  10/90  43/38    86.1    44.7    63.8    73.9    75.0    40.0    60.0    57.1
  30/70  43/38    88.4    50.0    66.7    79.2    83.3    40.0    58.8    60.0

tab.3 The 10/90% classification does not show marked differences between both groups because specificity, sensitivity and predictive values in the training and validation groups of patients remain below the 90% accuracy level. RLP (remnant triglycerise lipoprotein) (p<0.05) was picked as single parameter at the high discrimination 10/90% percentile pair. (training, validation, parameters).

Classification at the parameter picking 30/70% percentile pair provided a 9 parameter classification mask -+++-+-+- for parameter differences prior to therapy in the Sitagliptin patient group comprising (-) FMD (flow-mediated dilation), (+) BMI (body mass index), (+) HBA1C (glycated hemoglobin A1c), (+) PROINS (pro-insulin), (-) TRIGL (triglycerides), (+) TOTPAI-1 (total plasminogen activator inhibitor-1), (-) NTPROBND (N terminal prohormone of brain natriuretic peptide), (+) TNF-alpha (tumor necrosis factor-alpha). (-) U-ALB (albuminuria) (p<0.05, <0.10, >0.100) when compared to the Glimepiride reference group classification mask: 000000000 (training, validation, parameters, means,statistics).

7. Sitagliptin/Glimepiride after Therapy (26weeks)

CLASSIF1: SAIS1 Clinical Trial:    Sitagliptin/Glimepiride (26weeks)
 perc  (%)  pat  (nl/nv)  spectp  (%)  senstp  (%)  npvtp  (%)  ppvtp  (%)  specvp  (%)  sensvp  (%)  npvvp  (%)  ppvvp  (%)
  20/80  38/34    81.6    52.9    66.0    72.0    63.6    42.9    63.6    42.9

tab.4 The lowest still classifying percentile pair (20/80%) provides the single decreased (-) mask parameter D-ROMS (reactive oxygen metabolites-derived compounds) as best classifying parameter for the discrimination of Sitagliptin versus Glimepiride effects at 26weeks. (training, validation, parameters), although the low quality classification of the validation patients (vp) emphasizes the importance of determining further parameters.

CLASSIF1: SAIS1 Clinical Trial:    Cross Validation Sitagliptin/Glimepiride (26weeks)
 perc
 (%)
 pat  (nl/nv)  spectp  (%)  senstp  (%)  npvtp  (%)  ppvtp  (%)  specvp  (%)  sensvp  (%)  npvvp  (%)  ppvvp  (%)
  25/75   val.pat: 1,5,10..  38/34    84.2    55.9    68.1    76.0    90.9    28.6    66.7    66.7
  25/75   val.pat: 2,6,11..  39/32    89.7    53.1    70.0    81.0    90.0    10.1    52.8    50.0
  25/75   val.pat: 3,7,12..  38/33    100.0    39.4    65.5    100.0    88.8    0.0    50.8    0.0
  25/75   val.pat: 4,8,13..  40/32    85.0    46.9    66.7    71.9    77.8    33.3    53.8    60.0
  25/75   val.pat: 5,9,14..  39/32    84.6    46.9    66.0    71.4    80.0    33.3    57.1    60.0

tab.5 Parameter fishing classifications at the 25/75% percentile pair provided (-) D-ROMS (reactive oxygen metabolites-derived compounds) together with (+) CRP (high sensitivity C-reactive protein) as differences between Sitagliptin and Glimepiride classifications, using cross validation patients (valpats) 1,5,10... (learning, validation, parameters, means,statistics), (-) CARDIX (cardiac output index: total cardiac output (l/min)/body surface (m2)), (+) TPRI (total peripheral resistance index), (-) D-ROMS for valpats 2,6,11... (+) TPRI, (+) TNF_?, (-) D-ROMS for valpats 3,7,12..., (+) TPRI, (-) CARDIX for valpats 4,8,13... and (-) D-ROMS for valpats 5,9,14... (p<0.05, <0.10). Training and validation classifications are of low quality. They indicate however in tendency a Sitagliptin associated pattern of molecular differences in comparison to Glimepiride action, consisting of reduced (-) D-ROMS, increased proinflammation (+) CRP, (+) TNF-alpha (preexisting !) as well as (+) TPRI at decreased (-) CARDIX The parameters may be suitable indicators for further studies on metabolic differences between the action of both drugs.

8. Manual Classification

Standardized classifications can be performed manually with known percentile thresholds of: <7.06, >1.66, >58.46, >5.83, >28.06 for the parameters selected by the preceding classification process, like for example with the values of patient 72 Hb1Ac=7.20, CPEPTIN=1.70, HDL=46.0, SOD=8.80, BAP=29.877 yielding the classification mask: 0+0++, classifying as "T" . This is correct as can be verified in the training group (rec.51).

9. References:
external link 1. Nomoto1 H, Miyoshi H, Furumoto T et al A Randomized Controlled Trial Comparing the Effects of Sitagliptin and Glimepiride on Endothelial Function and Metabolic Parameters: Sapporo Athero-Incretin Study 1 (SAIS1).
PLoS ONE (2016) 11(10): e0164255. doi:10.1371/journal.pone.0164255
external link 2. Oyama J-i, Murohara T, Kitakaze M, Ishizu, Sato Y, Kitagawa K, et al. The Effect of Sitagliptin on Carotid Artery Atherosclerosis in Type 2 Diabetes: The PROLOGUE Randomized Controlled Trial.
PLoS Med (2016) 13(6): e1002051. doi:10.1371/journal.pmed.1002051
external link 3. Berchialla1 P, Lanera C, Sciannameo V, Gregori D, Baldi T. Prediction of treatment outcome in clinical trials under a personalized medicine perspective.
Scient Rep (2022) 12:4115 | https://doi.org/10.1038/s41598-022-07801-4

4. Valet.G Human cytome project: A new potential for drug discovery. In: Las Omicas genomica, proteomica, citomica y metabolomica: modernas tecnologias para desarrollo de farmacos.
Ed: Real Academia Nacional de Farmacia, Madrid (2005) p 207-228
5. Valet G, Valet M, Tschöpe D, Gabriel H, Rothe G, Kellermann W, Kahle H. White cell and thrombocyte disorders: Standardized, self-learning flow cytometric list mode data classification with the CLASSIF1 program system.
Ann NY Acad Sci (1993) 677: 233-251

       < back


© 2025 G.Valet
Internet: https://www.classimed.de/health1.html
gval22 last update: Jan 15,2025
first display: Dec 18,2024