Classimed logo


former: Cell Biochemistry Group
*external link Max-Planck-Institut für Biochemie, Martinsried


Cytomics is the multimolecular cytometric analysis of cell and cell system (cytome, cytomes) heterogeneity in combination with the exhaustive bioinformatic knowledge extraction from all analysis results (=system cytometry + bioinformatics) to access a maximum of information about the apparent molecular cell phenotype and may serve and to provide input for mathematical modeling and reverse engineering of molecular pathways (system cytomics).

Apparent molecular cell phenotypes in the naturally existing cellular heterogeneity of disease affected body cytomes represent an individualized correlate of the disease process as sum of the respective genotypic and exposure influences. The cell phenotypes contain information about the present disease status (diagnosis) as well as on its therapy dependent future development (prediction), since diseases are caused by molecular changes in cell systems or organs. With the concept, from cells to patient, the analysis of the full heterogeneity of cellular data opens the way for individualised disease course predictions for stratified patient groups (e.g. according to Kaplan-Meier). Predictions may provide a therapeutic lead time. Early preventive therapies can in this case for example try to prevent irreversible tissue damage. It may also be possible to achieve retardation of disease outbreak or prevention in certain situations like for potential asthma patients by the early recognition of a beginning sensibilisation phase. The immediate sanitation of patients environment may then postpone or prevent disease declaration. This would constitute a significant advantage for the patient.

Data classifications are presently considered predictive for individual patients at predictive values >95% for each classified disease category of the learning set while they are prognostic at values <95%. The effort will be to elevate this level to >99% through the search for more efficiently discriminating molecular data patterns.

General concept:
for predictive medicine by cytomics:

a.) multiparametric cytometric determination of cell constituents or cell functions in disease associated cytomes
b.) analysis (1, 2) of all measured numeric parameters for all cell populations that is in practice for >95% of the collected cells typically at the time of diagnosis establishment
c.) data pattern (heat map) classification of this entire information against patient's future disease course during the learning phase by exhaustive knowledge extraction
d.) classification of the embedded test set of patient data, measured under the same conditions as the learning set but remaining unknown to the learning process. Typically, every 5th or 10th patient is assigned to the test set prior to the learning phase to exclude classification biases.
e.) prospective classification of data collected from subsequent new patients during the clinical evaluation phase

Off-line Internet, a time saver !

Download the ZIP file containing all Cell Biochemistry pages for example into directory: d:\classimed\, unzip into the same directory, enter the address: file:///d:/classimed/cellbio.html into the URL field of the Internet browser to directly access text & figures on your harddisk free of network delays (further information).

© 2017 G.Valet
last update: Jan 11,2017
first display: Aug 02,2001